top of page
Exam

Course Plan :

Module 1    : Intuition to coding and Python.

Module 2    : Required math.

Module 3    : Data visualization packages (covers data science)

                      NumPy, Pandas, Matplotlib, Scikit-Learn

Module 4a  : Intuition behind Machine learning. (Scikit-Learn)

Module 4b  : Machine learning hands-on (Sci-kit learn)

Module 5 a :  Intuition behind Artificial intelligence

Module 5b  : Artificial intelligence hands on. (Tensor flow and keras)

Module 6*  : Project, Git-hub, Kaggle. 

Recommended Books: 

1.  Automate the Boring Stuff with Python, 2nd Edition: Practical Programming for Total Beginners Paperback – Illustrated, November 12, 2019

by Al Sweigart

2. Python Data Science Handbook

by Jake VanderPlas

Released November 2016, Publisher(s): O'Reilly Media, Inc.

ISBN: 9781491912058

3. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

by Aurélien Géron. Released September 2019, Publisher(s): O'Reilly Media, Inc.

ISBN: 9781492032649

4. Deep Learning with Python 1st Edition

by François Chollet (Author),  Manning Publications; 1st edition (December 22, 2017)

ISBN-10 : 9781617294433

Exam syllabus

Following topics from the Cambridge IGCSE and Secondary checkpoint level Mathematics: 

  • Algebra

  • Sets and Venn diagrams

  • correct ordering of operations (BIDMAS) and use of brackets

  • Money

  • Rules of indices

  • Basic statistics (questions based on measures of central tendency and variation)

Following topics from Logical Reasoning:

  • Alphabet sequence

  • Series

  • Arrangement (seating rank)

  • Problem Solving (Analytical)

  • Pictorial Reasoning

  • Analogy.

You can find some sample material for the topics mentioned above by clicking  here.

Register for the test by filling the form

bottom of page